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The quantum mechanical Floquet theory is investigated in order to
derive an efficient way of performing numerical calculations of the
dynamics of nuclear spin systems in MAS NMR experiments. Here,
we take advantage of time domain integration of the quantum evo-
lution over one period as proposed by Eden et al. (1). But a full
investigation of the propagator U(t, t0), and especially its dependence
with respect to t and t0 within a formalized approach, leads to further
simplifications and to a substantial reduction in computation time
when performing powder averaging for any complex sequence. Such
an approximation is suitable for quadrupolar nuclei (I > 1/2) and can
be applied to the simulation of the RIACT (rotational induced adi-
abatic coherence transfer) phenomenon that occurs under special
experimental conditions in spin locking experiments (2–4). The
present method is also compared to the usual infinite dimensional
Floquet space approach (5, 6), which is shown to be rather inefficient.
As far as we know, it has never been reported for quadrupolar nuclei
with I > 3/2 in spin locking experiments. The method can also be
easily extended to other areas of spectroscopy. © 1998 Academic Press

Key Words: Floquet theory; MAS simulation; RIACT; quadru-
polar nuclei.

I. INTRODUCTION

The quantum mechanical Floquet theory is a powerful tool for
the description of a quantum system subjected to a periodically
time-dependent Hamiltonian. It was first applied to spectroscopy
by Shirley (7) and is nowadays a subject of great interest because
of its ability to provide an efficient way of computing the time-
dependent response of the system, such as in laser–molecule
interactions (8–12) or in NMR. In the latter the spinning of the
sample around the magic angle has become a widespread tech-
nique and numerous studies using the Floquet theory have been
proposed to describe the full spinning sideband pattern using a
formalized approach (13), rotational resonance phenomena (14–
17), or the cross polarization process (18) and its optimization
(19, 20). These studies reveal that the Floquet theory is usually
applied in its time-independent Hamiltonian approach in NMR
spectroscopy. Progress in time propagation technique has been
made by Edenet al. (1), who took advantage of time integration
over one period of the quantum evolution to compute directly the

Fourier spectrum of the signal. This reduces the calculation time
required for long time propagation to the one needed by a inverse
Fourier transform. Most of these studies have been done for spin
1/2. Applications of the Floquet theory for nuclei with spinI .
1/2 that possess a quadrupole momentQ, called quadrupolar
nuclei, have received less attention except for the simple case of
MAS spectra for FID computation (13).

Calculations for description of spin locking experiments
(2, 3, 21) or nutation experiments (22–24) in NMR of quadrupolar
nuclei have usually been performed using the recursive method.
The Hamiltonian is considered to be constant over a small interval
time dt and the propagator is approximated asU(t 1 dt, t) 5
e2iH (t)dt. The simplicity of this calculation has resulted in its
widespread use, but compared to the present approach, this
method requires long time propagation and powder averaging. A
theoretical model using the Floquet theory for deuterium (I 5 1)
cross polarization MAS (25) has been recently reported but the
quadrupolar coupling constants involved were relatively small
compared to those of typical half-integer nuclei such as23Na or
27Al (of the order of megahertz). For these nuclei, and in the case
of strong irradiation (typically 100 kHz), the Floquet space ap-
proach fails because an accurate description requires a large
number of Fourier components, which makes the method ineffi-
cient, whereas the average Hamiltonian approach (26–28) widely
used for multipulse experiments is devoted to stroboscopic obser-
vation.

Thus there is a need for an efficient method for simulating
quadrupolar nuclei NMR in a rotating sample in order to
investigate new experiments such as multipulse experiments or
cross polarization processes between several dipolar coupled
nuclei. We propose to illustrate our approach by a description
of the RIACT phenomena using our formalism. For such an
experiment the crucial dependency upon the offset leads to use
high RF power. For comparison, we also introduce the Floquet
space in block operator formalism as proposed by Llor (29) and
use it in our simulations.

The remainder of the paper is organized as follows. In Section
II we present the Floquet theorem with a deeper investigation of
the propagatorU(t, t0) and the numerical processes used. Section
III is devoted to the introduction of the Floquet space in a block
operator formalism and to the link between the two approaches,1 Fax number: 01.69.08.87.86; e-mail: charpent@spec.saclay.cea.fr.
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especially in computingU(t, t0). Section IV gives the application
to the evolution of an observable and to its averaged signal. It is
shown that a formal average overg can be performed for usual
Hamiltonians that are continuous and that verifyH(g, t) 5
H(0, t 1 g/vR), whereg is the third component of the Euler angle
giving the orientation of the crystallite with respect to the rotor
fixed frame. Section V discusses the case of complex sequences
such as in multiple pulse techniques. Finally, Section VI gives the
application to RIACT.

II. FLOQUET THEORY REVISITED

We consider a finite quantum spin system subjected to a
periodically modulated Hamiltonian

H ~t ! 5 O
m

HmeimvRt [1]

of period TR 5 2p/vR. An initial state described by the
density operatorr(t0) evolves according to

r ~t ! 5 U ~t, t0!r ~t0!U1~t, t0! , [2]

where the evolution operatorU(t, t0) is the solution of the
Schrödinger equation

i
dU~t, t0!

dt
5 H ~t !U ~t, t0! , [3]

satisfying U(t0, t0) 5 Id. According to the Floquet theorem
(30), U(t, 0) can be expanded as the product

U ~t, 0! 5 P~t !e2iH# t , [4]

whereP(t) is a unitaryTR-periodic operator satisfyingP(TR) 5
P(0) 5 Id, and the constant Hermitian operatorH# is the so-called
average or effective Hamiltonian. Using the well-known property

U ~t, t0! 5 U ~t, 0!U1~t0, 0! [5]

and Eq. [4], we obtain the expansion

U ~t, t0! 5 P~t !e2iH# ~t2t0!P1~t0! . [6]

It is evident from Eq. [6] that the choice of the average
Hamiltonian is not unique. Indeed, for any unitary transforma-
tion X, the substitutionsP(t ) d P(t ) X andH# d X1H# X do
not change the evolution operator Eq. [6]. IfX is chosen as the
diagonalizing matrix ofH# ( #V 5 X1H# X andF(t) 5 P(t)X), one
gets an expansion similar to that used by Shirley (7),

U ~t, t0! 5 F ~t !e2iV# ~t2t0!F1~t0! , [7]

which, with Eq. [6], will be used for the remainder of the paper.
Furthermore, Eq. [7] can be transformed into an expression
similar to Eq. [4],

U ~t, t0! 5 F ~t ! F1~t0!e2i @F~t0!V# F1 ~t0 !#t , [8]

defining a new average HamiltonianH# (t0) 5 F (t0) #VF1 (t0)
which describes a stroboscopic observation with a time shifted
by t0 with respect toH# .

Equation [7] is similar to the form obtained by Llor but more
general as an arbitrary initial time is introduced. It can be
interpreted as follows:F(t) defines a generalized interaction
frame where the time-dependent periodic HamiltonianH(t) is
reduced to the time-independent diagonal average Hamiltonian
#V. One enters in this frame at timet0, evolves under the
time-independent Hamiltonian, and then goes back the initial
frame at timet. This transformation is in fact very similar to the
canonical transformation introduced for the study of the dy-
namics of spin systems in multipulse experiments (31). This
point is further discussed later.

For numerical calculation, the advantage of Eq. [7] is to
provide the propagatorU(t, t0) for any values oft and t0 from
the operatorsF(t) and #V, which can be deduced from a calcu-
lation over auniqueperiod of rotation of the propagatorU(t, 0).
The equations

U ~TR, 0! 5 e2iH# TR 5 F ~0!e2iV# TRF1~0! [9]

F ~t ! 5 U ~t , 0! F ~0!e1iV# t [10]

provides #V and F(t) for t in [0, TR]. Practically, the COM-
PUTE (1) protocol is used by discretizing the period of
rotation inN steps of durationdt 5 TR/N. The intermediate
propagatorsU(tj, 0) for j in [0, N] (tj 5 jdt) are calculated by
the approximation

U ~tj11, 0! 5 e2iH ~tj1dt/ 2!dtU ~tj , 0! , [11]

which is more accurate (32) than the usualU (tj11, 0) 5
e2iH (tj )dt U (tj , 0) . The Fourier componentsFn of F (t ) 5
(n FneinvRt defined by

Fn 5
1

TR
E

0

TR

U ~t , 0! F ~0!eiV# te2invRtdt [12]

are numerically obtained forn in [2N/2 1 1, N/2] by

Fn 5
1

N O
j50

N21

U ~tj , 0! F ~0!e1iV# tj e2invRtj . [13]
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This leads to the Fourier expansion of the evolution operator
with respect tot and t0,

U ~t , t0! 5 O
m,n

Fme2iV# ~t2t0!Fn
1eimvRte2invRt0. [14]

III. FLOQUET SPACE

Floquet space is often used because it provides an effi-
cient way of dealing with time-dependent problems by lift-
ing the time dependency for an infinite dimension. This has
to be naturally truncated in numerical simulations. The
formulation we propose in the following can be seen as a
way of indirectly calculating the diagonalizing matrixWF of
the Floquet HamiltonianHF, even when the dimension is
large. We briefly introduce the Floquet space method in
order to compare it with the method developed in the
previous section.

The Floquet Hamiltonian can be introduced (29) by inserting
the Fourier expansion ofU(t, 0), Eq. [14],

U~t, 0! 5 O
n

Fne2iV# tF1~0!e1invRt 5 O
n

Un~t!e1invRt [15]

in the Schro¨dinger equation [3].HF is then defined by the set
of relations

i
dUn~t !

dt
5 O

p

Hn,p
F Up~t ! , [16]

where Hn,p
F 5 Hn2p 1 nvRdn,p Id are its block matrix ele-

ments. The eigenvalues#vr of #V being defined mod[vR], the
same is true for the diagonal elements ofHF, whereas the
Un(t) are defined within a multiplicative factoreikvRt. We
choose, as usual,2vR/2 , #vr # 1vR/2. This defines the
Un(t) in a unique way and makes them ‘‘slowly varying’’ as
possible.

For notational convenience, we introduce the mode state
bases |n& (13) whose time representations are^t |n& 5 einvRt.
The evolution operator can be then represented by a Floquet
wavefunction (29)

|FF ~t !& 5 e2iHFt |FF ~0!& [17]

whose components are the operatorsUn(t),

|FF ~t !& 5 1
· · ·

U0~t !
U1~t !
· · ·

2 5 O
n

Un~t !|n& . [18]

Whence, according to Eq. [15],

|FF ~0!& 5 O
n

FnF1~0!|n& . [19]

In this block operator formalism, the evolution operator is
simply obtained through ât | product, that is,

^t |FF ~t !& 5 ^t | ~O
n

|n&^n |! |FF ~t !& 5 O
n

^n |FF ~t !&einvRt

5 O
n

Un~t !einvRt 5 U ~t , 0! . [20]

This leads to the expansion

U ~t, 0! 5 O
n

^n |e2iHFt|FF ~0!&einvRt , [21]

which appears equivalent (see Appendix A) to the usual ex-
pression (25, 33–35)

U ~t , 0! 5 O
p

^p |e2iHFt |0&eipvRt . [22]

But, here, the Fourier coefficients in Eq. [21]Un(t) are slow
varying in contrast to those in Eq. [22] (see Appendix B).

The relation Eq. [20] also gives the Floquet representation of
U (t , t0)5U (t , 0)U1 (t0, 0):

U ~t , t0!

5 ^t |FF ~t !&^FF ~t0!|t0&

5 O
m,n

^m|e2iHFt |FF ~0!&^FF ~0!|eiHFt0|n&eimvRte2invRt0 .

[23]

Taking t0 5 0 and using(n ^FF(0)|n& 5 Id (Eq. [19]) shows
that Eq. [23] is consistent with Eq. [21]. With the aid of the band
structure and change in the summation indices (calculations sim-
ilar to Appendix A), Eq. [23] can be reduced to the formula

U ~t , t0! 5 O
m

^m|e2iHF~t2t0! |0&eimvRt , [24]

which has been widely used in the context of multiphotonic
processes (8–12). It can be also transformed into the unusual
representation

U ~t , t0! 5 O
m

^0 |e2iHF~t2t0! |m&e2imvRt0, [25]
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which allows a separation between the evolution duration
t 2 t0 and the initial phase shiftmvRt0 of each Floquet mode.

To perform calculations in Floquet space, we use Eq. [20]. Let
WF be the diagonalizing matrixXHF(e2iHFt 5 WFe2iVFtWF1).
As shown in Appendix C, the elements ofWF in the Floquet space
are linked to the Fourier components ofF(t) through the essential
relation

Fn 5 ^n |WF |0& 5 ^n 1 p |WF |p& . [26]

Then, if we have an efficient way of evaluatingF(t) and #V (Eq.
[7]), the full diagonalization ofHF is unnecessary.

The important result of this section is the link between the
Floquet space and the usual recursive approaches which is
obtained by comparing the expressions [26] and [12] ofFn.
The general relation between the two approaches is in fact

^n |WF |0& 5
1

TR
E

0

TR

U ~t , 0! F ~0!eiV# te2invRtdt . [27]

This allows much faster calculations in Floquet space. How-
ever, for numerical analysis, the approach of the next section is
more efficient and should be preferred.

IV. EVOLUTION OF AN OBSERVABLE
AND POWDER AVERAGING

In solid-state NMR, the Hamiltonian is dependent on the
orientation of the tensorial interactions with respect to the
magnetic field in the laboratory frame. For powder samples,
magic angle spinning (MAS) NMR is used to get high-resolu-
tion spectra. This makes the Hamiltonian time-dependent and
periodic. Let the orientation of the crystallite in the rotor frame
be described by the Euler angle (a, b, g). The dependence on
the third angleg appears as a time shifttg 5 g/vR, that is,
H (a , b , g , t ) 5 H (a , b , 0, t 1 tg ). When performing a
powder average over the three Euler angles in order to get the
powder spectrum, this allows us to replace the third one by an
integration over the time shifttg. In the following, the (a, b)
dependence is assumed implicitly so that, for instance, one
writes H(g, t) for H(a, b, g, t).

Let T be the observable. For a spin system with time shift
tg 5 g/vR, the signal at timet is given by

s~t , g ! 5 Tr @TU~t 1 tg , tg !r ~0!U1~t 1 tg , tg !# , [28]

where U(t, 0) is the propagator evaluated forg 5 0. The
notationr(0) is used because the initial state is often indepen-
dent oftg (r(0) 5 IZ or IX). Extension to the caser(tg) will be
described elsewhere (36). By expandingU (t 1 tg , tg ) as in
Eq. [7], Eq. [28] can be transformed into

s~t , g ! 5 Tr @F1~t 1 tg !TF~t 1 tg !

3 e2iV# tF1~tg !r ~0! F ~tg !e1iV# t ] . [29]

We collect the factors in a way which allows to define the
new time-dependent periodic observablesT̃(t) andr̃(t) accord-
ing to the transformation

Af Ã~t ! 5 F1~t ! AF~t ! . [30]

The signal Eq. [29] is then

s~t , g ! 5 Tr @T̃~t 1 tg !e2iV# t r̃ ~tg !e1iV# t # . [31]

Thus, the observables are transformed into a time-dependent
frame where the time-dependent Hamiltonian has been reduced
to the time-independent average Hamiltonian#V. As previously
mentioned, this transformation is in fact similar to the canon-
ical transformation (29, 31), asF(t) can also be expressed as

F ~t ! 5 e2iS~t! , [32]

whereS(t) is periodic and unitary.
Introducing the Fourier transformÃp of Ã(t),

Ãp 5
1

TR
E

0

TR

Ã~t !e2ipvRtdt , [33]

the signal can be Fourier expanded with respect tot and g,
giving

s~t , g ! 5 O
p,q

Tr @T̃pe2iV# t r̃qe1iV# t #eipvRtei ~ p1q!g . [34]

Expanding the trace (#V is diagonal) and introducing the
notation

^Ã~t !&rs 5 ^r |Ã~t !|s& [35a]

^Ãp&rs 5 ^r |Ãp|s& [35b]

v# rs 5 ^r |V# |r & 2 ^s|V# |s& , [35c]

one gets

s~t , g ! 5 O
p,q
r,s

^T̃p&rs^r̃q&sre
i ~ pvR1v# rs!tei ~ p1q!g . [36]

The average over the Euler angle can then be carried out
analytically and leads to
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s~t ! 5
1

2p E
0

2p

s~t, g !dg

5 O
p

r,s

^T̃p&rs^r̃2p&sre
i ~ pvR1v# rs!t . [37]

The spectrums(v) of s(t) is then calculated according to

s~v# rs 1 pvR! 5 ^T̃p&rs^r̃2p&sr. [38]

Thus, the present approach allows a generalization of the
formal average overg to a Hamiltonian which does not com-
mute with itself at different times. To our knowledge, this
result has never been reported. It can reduce significantly the
overall computing time in MAS, nutation or spin locking
simulations (21–24). Furthermore, whenr(0) 5 T1, using
(T̃p)1 5 T̃2p

1 , the product̂ T̃p&rs^r̃2p&sr 5 |^T̃p&rs |2 is real.
This result is known in the case of MAS spectra (37). Here it
is generalized to the non-self-commuting Hamiltonians which
have the property

H ~g , t ! 5 H ~0, t 1 g /vR! . [39]

To conclude this section, we give the general method to
perform one simulation:

1. The propagatorU(tj, 0) is calculated over a single period
(Eq. [11]).

2. U(TR) is diagonalized to generate the diagonal represen-
tation of average Hamiltonian#V andF(0) (Eq. [9]).

3. The componentsF(tj) are evaluated (Eq. [10]).
4. All the required operatorsÃ(t) are calculated (Eq. [30])

and Fourier transformed (Eq. [33]).
5. The spectrums(v) is calculated (Eq. [38]).
6. The powder average is calculated by repeating steps 1 to

5 for differenta, b values.
7. If needed, inverse Fourier transform givess(t).

V. EXTENSION TO COMPLEX SEQUENCES

For a single evolution time, the formalism developed in the
preceding sections allows computation of a signal averaged
over the angleg. When complex sequences such as multipulse
applied synchronously with the rotation of the sample are
considered, the computation of the signal for each value ofg
and the summation can be unavoidable. Nevertheless, for cal-
culating the propagator for each angleg, we can take advan-
tage of the calculated operatorF(t) for the previous values of
g. For example, let us consider that one period of evolution can
be described as a succession of different Hamiltonians
HA(t ) , HB(t ) , HC(t ) , . . . that have the property Eq. [39].
The computation of the propagatorUg(t, 0) is performed using
the recursive method, thus requiring propagators such as

UX
g (tj , tk) for each HamiltonianHX(t). Following the approach

of Section 2, we can use the relation

UX
g ~tk, tj ! 5 FX~tk 1 g/vR!e2iV# X~tk2tj !FX

1~tj 1 g/vR! [40]

to compute the propagator for the next value ofg. It is never-
theless still possible to use Eq. [40] in a general trace calcu-
lation. By Fourier expansion of the operatorsFX(t 1 g/vR), and
change in the various summation indices, it is always possible
to get a formal average overg. Calculations can be long and
rather tedious, but remain straightforward.

VI. APPLICATION TO QUADRUPOLAR NUCLEI:
ROTATIONAL INDUCED ADIABATIC TRANFER

OF COHERENCE OF SPIN 3/2

We apply the formalism developed in the previous section to
the spin locking of a spin 3/2 in MAS experiment. As pointed
out by A. J. Vega (2, 3), the rotation at the magic angle induces
a time dependence to the first-order quadrupole interaction
which results in several zero crossings. Depending on the
passage range from slow (adiabatic) to sudden and under
several special experimental conditions (on-resonance irradia-
tion), an efficient adiabatic conversion of triple quantum co-
herence to single quantum coherence can be achieved (4).

Here, we consider a spin system consisting of half-integer
spin nuclei that are subjected to quadrupole interactions and to
a radio-frequency fieldvRF. In the conventional rotating frame
the Hamiltonian is given by

H ~t ! 5 HQ
~1! ~t ! 1 HQ

~2! ~t ! 1 dI z 1 vRFIX, [41]

whered is the offset andHQ
(1)(t) andHQ

(2)(t) are the first- and
second-order quadrupole interactions. Let us consider a single
crystallite described by a Euler angleVCR 5 (a, b, g) in the
rotor fixed axes system, which is related to the laboratory fixed
axis system by the time-dependent Euler angleVRL 5
(vRt , um, 0), whereum 5 54.74° is the magic angle. The
Hamiltonian can be expanded as

H ~a , b , g , t ! 5 O
m

Hm~a , b !eim~vRt1g! . [42]

Introducing the parameteru 5 vRt 1 g, we obtain

H ~a , b , u ! 5 O
m

Hm~a , b !eimu . [43]

The evolution operator is

Ug~t, 0! 5 T̂ expS2
i

vR
E

g

vRt1g

H~a, b, u!duD. [44]
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To describe the RIACT, we calculate the signal

sg ~t ! 5 Tr @I2
2,3Ug ~t , 0!I1

1,4Ug1~t , 0!# , [45]

where the matrix representation of the single and triple quan-
tum fictitious spin operators (38–40) is

I 1
1,4 5 1

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

2, I 2
2,3 5 1

0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

2. [46]

For a single crystallite, we will compare the accuracy of the
three following methods: the recursive method, Floquet space
calculation, and the present method.

An estimation of the accuracy is obtained by choosing as a
reference signalsREF(t) (obtained by the recursive method with
a discretization of the rotation in 1024 steps) and computing
the function

*0
TR |s~t ! 2 sREF~t !|2dt

*0
TR |sREF~t !|2dt

. [47]

The calculations are performed using the quadrupolar pa-
rameters of23Na in Na2C2O4 (e2qQ/h 5 2.6 MHz, h 5 0.7)
and the experimental conditionsvRF 5 160 kHz,d 5 3 kHz,
vR 5 12.5 kHz. Figure 1 displays the angular dependence of
the relative strength of the quadrupole interaction taken as

Q~u ! 5
Tr @HQ

1~u ! HQ~u !#

vQ
2 , [48]

whereHQ(u) 5 HQ
(1)(u) 1 HQ

(2)(u) andvQ 5 e2qQ/2I (2I 2 1)h.
Two limiting cases can be distinguished. WhenQ(u) @ vRF /vQ,
taking into account only the isotropic part ofHQ

(2)(u) (i.e., #HQ
(2) 5

dQ
2,3IZ

2,3 1 dQ
1,4IZ

1,4), diagonalization to first order gives the ap-
proximation by keeping only the meaningful terms (42),

H~u! < vQV20~u!T20 1 2vRFI X
2,3 1 vX

1,4IX
1,4 1 ~d 1 dQ

1,4!IZ
1,4 [49a]

< vQV20~u !T20 1 2vRFIX
2,3 1 vf

1,4If
1,4, [49b]

wherevX
1,4 } vRF

3 /vQ
2 . The Hamiltonian is expanded into three

constants of motion, that is, parts that commute with one
another. The eigensystem can be viewed as being divided in a
triple quantum subset, polarized along the direction defined by
the anglef in the (X, Z) plane, and a single quantum subset
polarized alongX. WhenQ(u) ! vRF /vQ, the Hamiltonian is
mainly given by

H ~u ! < vRFIX. [50]

The energy levels can be seen in Fig. 2,If
1,4 corresponding

to an almost degenerate subset when the offset is small
compared tovX

1,4. The anticrossing of the levels results in
the periodical transformation of the subset fromIX

2,3 to If
1,4.

Hence, if the passage is sufficiently slow, the system which
is originally in an eigenstate of the Hamiltonian will pass
into the eigenstate derived from it by continuity. Under
these conditions, one can transfer the triple quantum into the
single quantum coherence.

Figure 3 gives the reference signal, Eq. [45], for a crystallite.
Figures 4 and 5 display the error function Eq. [47] with respect to

FIG. 1. For 23Na in Na2C2O4, u-dependence of the relative quadrupolar
strengthQ(u) (Eq. [48]). The crystallite orientation in the rotor fixed frame is
VCR 5 (a 5 30°, b 5 60°, u).

FIG. 2. For 23Na in Na2C2O4, u-dependence of the energy levels ofH(a,
b, u) (Eq. [43]); same crystallite orientation as in Fig. 1.

FIG. 3. For 23Na in Na2C2O4, signal intensitysREF(t) (Eq. [45]). The
crystallite orientation isVCR5 (a 5 30°,b 5 60°,g 5 0°) and the parameters
are vR 5 12.5 kHz, vRF 5 160 kHz, d 5 3 kHz. The rotation period is
discretized in 1024 steps.
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the discretization parameter with the present method and with
Floquet space calculations, respectively. An error less than 1028

gives a curve than cannot be distinguished from the reference
curve. Thus, sufficient accuracy is obtained with a discretization
in 256 steps of the rotation for evaluating theU(tj, 0) operators and
256-mode Fourier components. For the Floquet space approach,
more than 200 mode states are required. These values are of the
same order as expected from the relation Eq. [26]. The CPU time
needed2 for the diagonalization of the Floquet Hamiltonian was
302.25 s, whereas by the present method, evaluation of the#V and
Fn operators required 0.11 s.

Agreement of our simulation with experiment for powder
signals is shown in Fig. 6 for short pulses and in Fig. 7
for long on-resonance irradiation. The experimental data were
acquired using a hypercomplex phase cycling (43) and we plot
the area of the spectra for different pulse widths of the second
pulse which transfer the triple quantum coherence into the
single one. Nevertheless, for pulse width greater than 6ms, a
loss of half of the signal was observed during the first quarter
of the rotation period as shown in Fig. 6. In Fig. 7, the
theoretical curve was scaled by a factor of 2 with respect to the
theoretical curve of Fig. 6. Considering all the preparation
period, that is, the excitation of the triple quantum coherence
before its conversion, does not lead to any significant modifi-
cation of our theoretical result. The signal is simply scaled. We
also tried to take into account some local fielddIZ with a
Gaussian distribution of the parameterd. This could not repro-
duce so rapid a loss of signal during the first quarter-period.
This phenomenon is unexplained for the moment, and other
models are currently being investigated, such as taking into
account the homonuclear dipolar interaction by considering
several spins. This interaction is not crucial in the hard pulse
regime but can have a significant effect in the adiabatic con-
version process. Nevertheless, the good agreement of our sim-

ulation with the experimental data for long irradiation shows
that the model is reliable for describing the RIACT phenom-
enon. The critical dependence with respect to the offset in the
adiabatic conversion process is shown in Fig. 8, where the
signal is computed for an optimal short pulse duration (3ms)
and one-quarter of the rotation period (20ms). It is also visible
in the powder averaged spectra (Fig. 9) that the intense com-
ponents at multiples of the rotation frequency disappear when
the offset increases. These well-resolved components at the
rotation frequency lead us to conclude that some part of the
triple quantum coherence and the single quantum coherence
are locked to multiples of the rotation frequency under on-
resonance irradiation. Such considerations can be of great
interest in studying the possibility of locking the triple quantum
coherence for multiple quantum cross-polarization processes.
This will be further investigated.

VII. CONCLUSION

Some properties of the evolution operator for periodic time-
dependent Hamiltonians have been carefully analyzed. This al-
lows significant improvements in the calculation of the response
of spin systems in sample-spinning NMR experiments. That sim-
ulation method is more efficient than the Floquet space method,

2 Calculations were performed on an UltraSparc II (CPU frequency 170
MHz) SUN station with a program written in FORTRAN 90, using the
diagonalization procedures F02HAF and F02GBF of the NAG FORTRAN
library (mark 16).

FIG. 5. For 23Na in Na2C2O4, dependence of the error function Eq. [47]
on the number of Fourier modes in Floquet space calculation, with same NMR
parameters as in Fig. 3.

FIG. 6. For 23Na in Na2C2O4, experimental and simulated powder signal
Eq. [45] with respect to pulse duration in microseconds. Experimental data
were obtained on a Bruker 300-Mhz DMX withvR 5 12.5 kHz,vRF 5 160
kHz, d 5 3 kHz. For numerical data, the rotation is discretized in 256 steps.

FIG. 4. For 23Na in Na2C2O4, dependence of the error function Eq. [47]
for different discretizations of the rotation period inN steps, with same NMR
parameters as in Fig. 3.
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which requires diagonalization of a matrix of large dimension.
Moreover, that method can be seen as a new way of diagonalizing
the Floquet matrix by taking advantage of its band structure.
Generalization of our approach for multimode is currently being
investigated. The application to the complete simulation of MQ-
MAS spectra (44, 45), including the Z-filtering method (46), will
be presented elsewhere (36). This approach will also be useful in
theoretical studies of CPMAS processes for quadrupolar nuclei.
Research in this direction is being undertaken.

APPENDIX A

The evolution operator in the Floquet space is

UF ~t , 0! 5 e2iHFt 5 WFe2iV# FtWF1 . [A1]

The eigenvalues of the Floquet Hamiltonian are known to be
of the form

ln
i 5 l0

i 1 nvR, [A2]

wherei indexes the spin state andn the Floquet mode. Thus,
introducing the block matrix

NF 5 O
k

k |k&^k |

5 1
· · · · · · · · · · · · · · ·
· · · 2Id 0 0 · · ·
· · · 0 0 0 · · ·
· · · 0 0 1Id · · ·
· · · · · · · · · · · · · · ·

2 [A3]

and

I F 5 O
k

|k&^k |, [A4]

#VF can be rewritten as#V 5 vRNF 1 #VIF. We want to derive
the equivalence between Eqs. [21] and [22]. We recall some
useful properties:

O
n

^n |FF ~0!& 5 Id [A5a]

e2ivRNFt |k& 5 e2ikvRt |k& [A5b]

e2iV# IFt |k& 5 e2iV# t |k& [A5c]

^p 1 k |WF |k& 5 ^p |WF |0& . [A5d]

FIG. 7. For 23Na in Na2C2O4, experimental and simulated powder signal
Eq. [45] with respect to on-resonance irradiation duration in microseconds,
with same NMR parameters as in Fig. 6.

FIG. 8. For 23Na in Na2C2O4, theoretical dependence of the powder signal
intensity Eq. [45] on the offset (a) for small pulse width (t 5 3 ms) and (b) for
adiabatic conversion (t 5 20 ms) with the same parameters as Fig. 6.

FIG. 9. For 23Na in Na2C2O4, spectras(v) (Eq. [38]) of the powder
signal for different values of the offset, other parameters being the same as
in Fig. 6.
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Equation [21] can be transformed as follows:

U ~t , 0! 5 O
n,k

^n |e2iHFt |k&^k |FF ~0!&einvRt

5 O
n,k,p

^n|WF |p& ^p|e2iV# Ft |p& ^p|WF1 |k& ^k|FF~0!&einvRt

5 O
n,k,q

^n|WF |q 1 k& e2i ~q1k!vRte2iV# t^q 1 k|WF1 |k&

3 ^k |FF ~0!&einvRt . [A6]

Applying the band structure property Eq. [A5d] leads to the
final result,

U ~t , 0! 5 O
n,k,q

^n 2 k |WF |q&e2iqvRte2iV# t^q |WF1 |0&

3 ^k |FF ~0!&ei ~n2k!vRt

5 O
m,q

^m|WF |q&e2iqvRte2iV# t^q |WF1 |0&

3 O
k

^k |FF ~0!&eimvRt

5 O
m

^m|e2iHFt |0&eimvRt . [A7]

APPENDIX B

Using the method of Appendix A,Vn(t ) 5 ^n |e2iHF

t |0&
can be expanded as

Vn~t ! 5 O
k

^n |WF |k&e2iV# t^k |WF1 |0&e2ikvRt . [B1]

The band structure and Eq. [26] (derived in Appendix C) give

Vn~t ! 5 O
k

Fn2ke
2iV# tFk

1e2ikvRt . [B2]

InsertingF(0)F1(0) 5 Id, we obtain

Vn~t ! 5 O
k

Un2k~t !Uk
1~0!e2ikvRt , [B3]

which shows that the Fourier coefficients of Eq. [22]Vn(t), are
oscillating quickly.

APPENDIX C

From Eq. [22], using the same method as in Appendix A
(Eqs. [A6] and [A7]), we obtain

U ~t , 0! 5 O
k,n

^n |WF |k&e2iV# t^k |WF1 |0&ei ~n2k!vRt

5 O
k,p

^p 1 k |WF |k&e2iV# t ^k |WF1 |0&eipvRt

5 SO
p

^p|WF |0& eipvRtDe2iV# tSO
k

^k|WF1 |0&D.

[C1]

Comparison with Eq. [7] leads to

Fp 5 ^p |WF |0& . [C2]

It should be mentioned that the initial state |FF(0)&, Eq. [19],
is related to the usual initial state |0& by

|FF ~0!& 5 WFF1~0!|0& . [C3]

Note added in proof.The formal average overg (Eqs. [38] and [39]) was
recently proposed within the COMPUTE formalism by M. H. Levitt and M.
Edén in the paper ‘‘Numerical Simulation of Periodic NMR Problems: FAST
Calculation of Carousel Averages,’’ submitted toMol. Phys.
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