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The quantum mechanical Floquet theory is investigated in order to
derive an efficient way of performing numerical calculations of the
dynamics of nuclear spin systems in MAS NMR experiments. Here,
we take advantage of time domain integration of the quantum evo-
lution over one period as proposed by Eden et al. (1). But a full
investigation of the propagator U(t, t,), and especially its dependence
with respect to t and t, within a formalized approach, leads to further
simplifications and to a substantial reduction in computation time
when performing powder averaging for any complex sequence. Such
an approximation is suitable for quadrupolar nuclei (I > 1/2) and can
be applied to the simulation of the RIACT (rotational induced adi-
abatic coherence transfer) phenomenon that occurs under special

Fourier spectrum of the signal. This reduces the calculation tin
required for long time propagation to the one needed by a inver
Fourier transform. Most of these studies have been done for sy
1/2. Applications of the Floquet theory for nuclei with spin>
1/2 that possess a quadrupole moméntcalled quadrupolar
nuclei, have received less attention except for the simple case
MAS spectra for FID computatiorLg).

Calculations for description of spin locking experiments
(2, 3, 2] or nutation experiment22—24 in NMR of quadrupolar
nuclei have usually been performed using the recursive methc
The Hamiltonian is considered to be constant over a small interv

experimental conditions in spin locking experiments (2-4). The time &t and the propagator is approximated @¢ + &t t) =
present method is also compared to the usual infinite dimensional ¢~ H®3 The simplicity of this calculation has resulted in its
Floguet space appro_ach (5, 6), which is shown to be rather inefficient: widespread use, but compared to the present approach, t
A_s far as we k_now,_lt has never beer? reported for quadrupolar nuclei method requires long time propagation and powder averaging.
W't.h | = 3/2 in spin locking experiments. The method Can, also be theoretical model using the Floquet theory for deuterilins (1)
easily extended to other areas of spectroscopy. © 1998 Academic Press .

Key Words: Floquet theory; MAS simulation; RIACT; quadru- cross polarization M AS2) has bgen recently reporte_d but the
polar nuclei. quadrupolar coupling constants involved were relatively sma

compared to those of typical half-integer nuclei suct & or

27l (of the order of megahertz). For these nuclei, and in the cas
of strong irradiation (typically 100 kHz), the Floguet space ap
proach fails because an accurate description requires a lal

The quantum mechanical Floquet theory is a powerful tool foumber of Fourier components, which makes the method inef
the description of a quantum system subjected to a periodicatignt, whereas the average Hamiltonian approa6k-29 widely
time-dependent Hamiltonian. It was first applied to spectroscopged for multipulse experiments is devoted to stroboscopic obs
by Shirley 7) and is nowadays a subject of great interest becausation.
of its ability to provide an efficient way of computing the time- Thus there is a need for an efficient method for simulatin
dependent response of the system, such as in laser—molequiadrupolar nuclei NMR in a rotating sample in order tc
interactions 8—12 or in NMR. In the latter the spinning of the investigate new experiments such as multipulse experiments
sample around the magic angle has become a widespread teobss polarization processes between several dipolar coupl
nique and numerous studies using the Floguet theory have beanlei. We propose to illustrate our approach by a descriptic
proposed to describe the full spinning sideband pattern usingfathe RIACT phenomena using our formalism. For such al
formalized approachl@), rotational resonance phenomefid{ experiment the crucial dependency upon the offset leads to u
17), or the cross polarization proceskS( and its optimization high RF power. For comparison, we also introduce the Flogu
(19, 20. These studies reveal that the Floquet theory is usuatipace in block operator formalism as proposed by 128 &énd
applied in its time-independent Hamiltonian approach in NMRBse it in our simulations.
spectroscopy. Progress in time propagation technique has beefhe remainder of the paper is organized as follows. In Sectic
made by Edert al. (1), who took advantage of time integrationll we present the Floguet theorem with a deeper investigation ¢
over one period of the quantum evolution to compute directly tiiee propagatod(t, t,) and the numerical processes used. Sectio
Il is devoted to the introduction of the Floquet space in a blocl
operator formalism and to the link between the two approache

I. INTRODUCTION

1 Fax number: 01.69.08.87.86; e-mail: charpent@spec.saclay.cea.fr.

181 1090-7807/98 $25.00

Copyright © 1998 by Academic Press
All rights of reproduction in any form reserved.



182 CHARPENTIER, FERMON, AND VIRLET

especially in computind)(t, ty). Section IV gives the application which, with Eq. [6], will be used for the remainder of the paper
to the evolution of an observable and to its averaged signal. ItHarthermore, Eq. [7] can be transformed into an expressic
shown that a formal average ovgrcan be performed for usual similar to Eq. [4],

Hamiltonians that are continuous and that verifi(y,t) =

H(0,t + y/wg), Wherey is the third component of the Euler angle
giving the orientation of the crystallite with respect to the rotor
fixed frame. Section V discusses the case of complex sequences _ _
such as in multiple pulse techniques. Finally, Section VI gives ti€fining a new average Hamiltoniah(ty) = F (to)QF ™ (to)

U(t, to) = F (1) F* (t,)e IF0F [8]

application to RIACT. which describes a stroboscopic observation with a time shifte
by t, with respect toH.
Il. FLOQUET THEORY REVISITED Equation [7] is similar to the form obtained by Llor but more

general as an arbitrary initial time is introduced. It can b
We consider a finite quantum spin system subjected toirderpreted as followsF(t) defines a generalized interaction

periodically modulated Hamiltonian frame where the time-dependent periodic Hamiltortt) is
reduced to the time-independent diagonal average Hamiltoni
H(t) = S H, M 1] 1 One enters in this frame at timg, evolves under the

time-independent Hamiltonian, and then goes back the initi
frame at time. This transformation is in fact very similar to the
of period T = 2mwg. An initial state described by the canonical transformation introduced for the study of the dy

m

density operatop(t,) evolves according to namics of spin systems in multipulse experimer@$).( This
point is further discussed later.
p(t) = U(t, to)p(t) U™ (t, to) 2] For numerical calculation, the advantage of Eq. [7] is t
- y L0 0 y L0/

provide the propagatdd(t, t;) for any values ot andt, from
the operator$(t) and(}, which can be deduced from a calcu-
lation over auniqueperiod of rotation of the propagatbi(t, 0).
The equations

where the evolution operatdd(t, ty) is the solution of the
Schralinger equation

CdU(t, to) - -
! T HOU(, to), [3] U(Tg, 0) = e "= = F (0)e 1*"F*(0) [9]

o . F(t)=U(t, OF (0)e™™ [10]
satisfying U(t,, t;) = Id. According to the Floquet theorem

t th t —
(30). U(t, 0) can be expanded as the produc provides() and F(t) for t in [0, Tg]. Practically, the COM-

PUTE (1) protocol is used by discretizing the period of

U(t, 0) =P(t)e ™, [41  rotation inN steps of duratiordt = Tg/N. The intermediate
propagatordJ(t;, 0) forj in [0, N] (t; = j&t) are calculated by
whereP(t) is a unitary Te-periodic operator satisfyinB(Te) = the approximation

P(0) = Id, and the constant Hermitian operakbis the so-called
average or effective Hamiltonian. Using the well-known property U(t,, 0) = e M6 @23y (¢ Q) [11]

U(t, to) = U(t, OU"(to, 0) [3] L
which is more accurate3g) than the usual(t;,,, 0) =

e M2y (t;, 0). The Fourier components, of F(t) =

and Eq. [4], we obtain the expansion ) ’
a- 14] P 3, F,e"r defined by

U(t, t,) = P(t)e Htop+(t,). 6]

It is evident from Eq. [6] that the choice of the average
Hamiltonian is not unique. Indeed, for any unitary transforma-
tion X, the substitution® (t) < P(t) X andH < X*HX do
not change the evolution operator Eq. [6]Xfs chosen as the are numerically obtained farin [—N/2 + 1, N/2] by
diagonalizing matrix oH (0 = X*HX andF(t) = P()X), one
gets an expansion similar to that used by Shirl8y (

Tr )
Fo= J U(t, 0) F(0)ee ™=dt [12]
R
0

1 N-1 B
- Fo=1 2 U(t, OF(0)e e, [13]
U(t, to) = F(t)e IR (t,), [7] j=0
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This leads to the Fourier expansion of the evolution operatorWhence, according to Eq. [15],
with respect tat andt,,

) [97(0)) = X FoF' (0)In). [19]
U (t, tO) — E Fmefi!).(tfto)F;eimetefianto. [14] n
mn
In this block operator formalism, the evolution operator is

simply obtained through roduct, that is,
I1l. FLOQUET SPACE Pl ghelp

Floguet space is often used because it provides an effi—<t|CpF(t)> = (t (2 In)(nD [O7(1) = X (n|@F(1)em
cient way of dealing with time-dependent problems by lift- " "
ing the time dependency for an infinite dimension. This has = > U,(t)e"r = U(t, 0). [20]
to be naturally truncated in numerical simulations. The n
formulation we propose in the following can be seen as a
way of indirectly calculating the diagonalizing mat\¥ of  This |eads to the expansion
the Floquet HamiltoniarH™, even when the dimension is
large. We briefly introduce the Floquet space method in
order to compare it with the method developed in the
previous section.

The Floguet Hamiltonian can be introduc@®) by inserting

the Fourier expansion df(t, 0), Eq. [14], which appears equivalent (see Appendix A) to the usual e:
pression 25, 33-3%

U(t, 0) = X (nle""dF(0))e", (21]

U (t, 0) _ z Fne—i(LtF+ (0)e+inwpt — E Un(t)e+inwpat [15]

U(t, 0) = X (ple”""|0)eP . (22]

P

in the Schidinger equation [3]H is then defined by the set _ - )
of relations But, here, the Fourier coefficients in Eq. [2W}(t) are slow

varying in contrast to those in Eq. [22] (see Appendix B).
The relation Eq. [20] also gives the Floquet representation

dU,(t) S HE UL (1), [16] U(t, to)=U(t, O)U" (o, 0):
p

dt

| np

U (t, to)

F _ . . _
whereHy, , = H,_, + nwgd, , Id are its block matrix ele = (DR (NP (to)[to)

ments. The eigenvalues, of Q) being defined modjg], the

same is true for the diagonal elementsHf, whereas the => (m|e M DF (0))(DF(0)|eH T |n)emert g~ inerto.
U,(t) are defined within a multiplicative factog““=, We mn

choose, as usuak wg/2 < w, = +wg/2. This defines the (23]
U, (t) in a unique way and makes them “slowly varying” as

possible. Takingt, = 0 and usingZ,, (®" (0)jn) = Id (Eq. [19]) shows

For notational convenience, we introduce the mode statat Eq. [23] is consistent with Eq. [21]. With the aid of the banc
basesr] (13) whose time representations dtén) = €"“r',  structure and change in the summation indices (calculations sil
The evolution operator can be then represented by a Flogilat to Appendix A), Eq. [23] can be reduced to the formula
wavefunction 29)

_ U(t, to) = X (mle M0 |0)em=, [24]
|®F (1)) = e |®F(0)) [17] m
whose components are the operatdygt), which has been widely used in the context of multiphotoni
processes8—12. It can be also transformed into the unusua
representation

iy | Uo®
7=y, | = 2 O 8] Ut to) = 3 (e ™ jmye ™, [25]

m
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which allows a separation between the evolution duration s(t,y) = Tr[F*(r +t)TF(7 + t,)
t — t; and the initial phase shifhwgt, of each Floquet mode. s i
To perform calculations in Floquet space, we use Eq. [20]. Let X e "™FT(t,)p(0)F(t,)e™].  [29]

W be the diagonalizing matri¥HF (€71t = Wre 2 tWF ).

As shown in Appendix C, the elements\of in the Floquet space  We collect the factors in a way which allows to define the
are linked to the Fourier componentsk{f) through the essential new time-dependent periodic observablés andp(t) accord-
relation ing to the transformation

Fo = (NIWF|0) = (n + p[W'|p). (26] A= A(t) = FT () AF(t). (30]

Then, if we have an efficient way of evaluatif¢f) and() (Eq. The signal Eq. [29] is then
[7]), the full diagonalization oH" is unnecessary.
The important result of this section is the link between the _ % —ifdr +iQdr
s(T, =Tr[T(r+t,)e t,)e . 31
Floquet space and the usual recursive approaches which is () [T(r+t) Pt ] (311
obtained by comparing the expressions [26] and [12Fqf

The general relation between the two approaches is in fact Thus, the observables are transformed into a time-depend:e

frame where the time-dependent Hamiltonian has been reduc
to the time-independent average HamiltonfanAs previously
1 (™ ot mentioned, this transformation is in fact similar to the canon
(nW°j0) = Tx U(t, O)F(0)e™e ™™™ dt.  [27] jcql transformation29, 3, asF(t) can also be expressed as
0

F(t) = e, [32]
This allows much faster calculations in Floquet space. How-
ever, for numerical analysis, the approach of the next SeCtioq/\}ﬁereS(t) is periodic and unitary

more efficient and should be preferred. Introducing the Fourier transforn?\p of A(t),

IV. EVOLUTION OF AN OBSERVABLE -
AND POWDER AVERAGING Ap — 'I:'Lf A(t)efip“’R‘dt, [33]
R

In solid-state NMR, the Hamiltonian is dependent on the 0
orientation of the tensorial interactions with respect to the . )
magnetic field in the laboratory frame. For powder sample§€ signal can be Fourier expanded with respect amd v,
magic angle spinning (MAS) NMR is used to get high-resoll#'V'Ng
tion spectra. This makes the Hamiltonian time-dependent and
periodic. Let the orientation of the crystallite in the rotor frame s(t,y) =, Tr['T'pe—iﬁf;)qe“ﬁf]eipwwei<P+f1>7_ [34]
be described by the Euler angle, (3, y). The dependence on p.q
the third angley appears as a time shiff = y/wg, that is,
H(a, B, v,t) = H(a, B,0,t +t,). When performing a  Expanding the trace(Y is diagonal) and introducing the
powder average over the three Euler angles in order to get tigation
powder spectrum, this allows us to replace the third one by an
integration over the time shift,. In the following, the &, )

dependence is assumed implicitly so that, for instance, one (At = (rIAM]S) [354]

writes H(y, t) for H(a, B, v, t). By = (r|Als) [35b]
Let T be the observable. For a spin system with time shift B _ _

t, = ylog, the signal at timer is given by as = (r|Qr) — (s|]s), [35¢]
s(t,y) = Tr[TU(r + t,, t,)p(OU*(r + t,, t,)], [28] ©Onegets

where U(t, 0) is the propagator evaluated for = 0. The S(7, ¥) = 2 (Tohs(Pg)s€ Pt ame(Pray 3]

notationp(0) is used because the initial state is often indepen- v

dent oft,, (p(0) = 1, or I). Extension to the caset,) will be
described elsewher&). By expandingU (7 + t,, t,) as in The average over the Euler angle can then be carried ¢
Eq. [7], EqQ. [28] can be transformed into analytically and leads to
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1 (2= UX(t;, t,) for each Hamiltoniam(t). Following the approach
s(r) = 5 f s(t, y)dy of Section 2, we can use the relation
0
= > <TP>TS<5—p>Srei(pr+&)rS)T. [37] UX(t, t) = Fx(t + ylwg)e " XEVEL G + ylog)  [40]
p

rs

to compute the propagator for the next valueyoft is never-
The spectruns(w) of s(t) is then calculated according to theless still possible to use Eq. [40] in a general trace calc
lation. By Fourier expansion of the operatétgt + v/wg), and
change in the various summation indices, it is always possib
to get a formal average over. Calculations can be long and

L rather tedious, but remain straightforward.
Thus, the present approach allows a generalization of the

formal average ovey to a Hamiltonian which does not com- VI. APPLICATION TO QUADRUPOLAR NUCLEI:

mute with itself at different times. To our knowledge, this ROTATIONAL INDUCED ADIABATIC TRANFER

result has never been reported. It can reduce significantly the OF COHERENCE OF SPIN 3/2

overall computing time in MAS, nutation or spin locking

simulations 21-24. Furthermore, wherp(0) = T, using We apply the formalism developed in the previous section t
(To)" = T, the productTp),(p_p)sr = KTp)sl? is real. the spin locking of a spin 3/2 in MAS experiment. As pointec
This result is known in the case of MAS spectBY)( Here it out by A. J. VegaZ, 3), the rotation at the magic angle induces
is generalized to the non-self-commuting Hamiltonians which time dependence to the first-order quadrupole interactic

S(a’rs + pr) = <:|‘-p>rs<f)fp>sr- [38]

have the property which results in several zero crossings. Depending on tf
passage range from slow (adiabatic) to sudden and unc
H(y,t) =H(0,t+ y/wg). [39] several special experimental conditions (on-resonance irradi

tion), an efficient adiabatic conversion of triple quantum co
To conclude this section, we give the general method R§reénce to single quantum coherence can be achieljed (
perform one simulation: !—|ere, we consider a spin system conS|st|_ng of h_alf-lntege
spin nuclei that are subjected to quadrupole interactions and
1. The propagatod(t;, 0) is calculated over a single perioda radio-frequency fieldge. In the conventional rotating frame
(Eg. [11]). the Hamiltonian is given by
2. U(Tg) is diagonalized to generate the diagonal represen-
tation of average Hamiltoniaft and F(0) (Eq. [9]).
3. The componentB(t;) are evaluated (Eqg. [10]).

4. All the required operatorA(t) are calculated (Eq. [30]) ) 1 ) ]
and Fourier transformed (Eq. [33]). where$ is the offset andd () andHE)(t) are the first- and

5. The spectrung(w) is calculated (Eq. [38]). second-order quadrupole interactions. Let us consider a sing

6. The powder average is calculated by repeating steps CfyStallite described by a Euler anglk.g = («, B, v) in the
5 for differente, B values. rotor fixed axes system, which is related to the laboratory fixe

7. If needed, inverse Fourier transform givaés). axis system by the time-dependent Euler anfle, =
(wgt, 6, 0), wheref,, = 54.74° is the magic angle. The

H(t) = HZ(t) + HE(t) + 81, + wrelx, [41]

V. EXTENSION TO COMPLEX SEQUENCES Hamiltonian can be expanded as
For a single evolution time, the formalism developed in the H(a, B, vy, t) = > Hpyl(e, B)emrtty) [42]
preceding sections allows computation of a signal averaged m

over the angley. When complex sequences such as multipulse
applied synchronously with the rotation of the sample are |ntroducing the parameter = wgt + v, we obtain
considered, the computation of the signal for each valug of
and the summation can be unavoidable. Nevertheless, for cal- B im0
culating the propagator for each anglewe can take advan- H(a, B, ) = 2 Hula, B)e™.
tage of the calculated operatb(t) for the previous values of "
v. For example, let us consider that one period of evolution can . .

. . . .. ._— The evolution operator is
be described as a succession of different Hamiltonians
HA(t), Hg(t), Hc(t), ... that have the property Eq. [39]. . Rty
The computationcof the propagatdr/(t, 0) is performed using U(t,0 = TEXF( - er H(a, B, e)de)- [44]
the recursive method, thus requiring propagators such as

[43]

Y
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FIG. 1. For?Na in NaC,0,, 6-dependence of the relative quadrupolar FIG. 2. For23Na in NaC,0,, 6-dependence of the energy levelsHi,
strengthQ(6) (Eg. [48]). The crystallite orientation in the rotor fixed frame isB, 6) (Eq. [43]); same crystallite orientation as in Fig. 1.
Qcr = (a = 30°, B = 60°, 0).

H(Q) =~ wQVZO(O)TZO + 2(1)R|:| §,3 + (1);24';’4 + (8 + 884)|%4 [493.]

To describe the RIACT, we calculate the signal ~ woVao(8)Tao + 20pel 23+ w1, [49b]
(1) = Tr{I2°0(t, 013U (t, 0)], [45]  wherewk* wie/wd. The Hamiltonian is expanded into three

constants of motion, that is, parts that commute with on

where the matrix representation of the single and triple quagnother. The eigensystem can be viewed as being divided ir
tum fictitious spin operators38—40Q is triple quantum subset, polarized along the direction defined t
the angle in the (X, Z) plane, and a single quantum subse

0 001 0 00O polarized along. WhenQ(0) < wgg/wq, the Hamiltonian is
14— 0 00O 123 0 00O (46] mainly given by
+ 0 00O0]" 0100

0 0O00O 0 00O H(6) =~ wgelx. [50]

For a single crystallite, we will compare the accuracy of the The energy levels can be seen in Figl; corresponding
three following methods: the recursive method, Floquet spaige an almost degenerate subset when the offset is sm:
calculation, and the present method. compared towk? The anticrossing of the levels results in

An estimation of the accuracy is obtained by choosing aghe periodical transformation of the subset frof? to 15
reference signadze((t) (obtained by the recursive method withHence, if the passage is sufficiently slow, the system whic
a discretization of the rotation in 1024 steps) and computing originally in an eigenstate of the Hamiltonian will pass

the function into the eigenstate derived from it by continuity. Under
these conditions, one can transfer the triple quantum into tt
ST s(t) — srer(t) Pt single quant_um coherence. _ _
T 24 . [47] Figure 3 gives the reference signal, Eq. [45], for a crystallite
Jo Isrer(t)dit Figures 4 and 5 display the error function Eq. [47] with respect t

The calculations are performed using the quadrupolar pa-
rameters of*Na in NaC,0, (€6qQ/h = 2.6 MHz, n = 0.7) 1.0 : : r : ;
and the experimental conditions;- = 160 kHz,6 = 3 kHz,
wr = 12.5 kHz. Figure 1 displays the angular dependence of
the relative strength of the quadrupole interaction taken as & 06 1

[
w

=04 ¢ .
Tr[Hg(6)Ho(6)] ’
Q(e) = (1)2 ’ [48] 02 r |
Q
0_0 1 1 L
0.0 20.0 40.0 60.0 80.0
whereHq(0) = HS(0) + HE(0) andwg = €Q/21 (2| — D)h. Irradiation duration (us)

Two limiting cases can be distinguished. WH@(®) > wre/wq, I , , ,

taking into account only the isotropic part &f(0) (i.e., HS = FIG. 3. For “Na in NaC,0,, signal intensityseee(t) (Eq. [45]). The
53573 ey ) o . o0 Q crystallite orientation i€)g = (o = 30°,8 = 60°,y = 0°) and the parameters

85717~ + 8g71z"), diagonalization to first order gives the apare w, = 12.5 kHz, wre = 160 kHz, 5 = 3 kHz. The rotation period is

proximation by keeping only the meaningful terrd)( discretized in 1024 steps.



TIME PROPAGATION TECHNIQUE FOR MAS NMR SIMULATION 187

0.0 2.0 ——— ‘ T T
t 0.0
— &0 N=-256 —
§ —100 O—@N=512 ’ § —20
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— -
-8.0 k
! I -1 00 L L I 1
30'00.0 500.0 1000.0 40.0 80.0 120.0 160.0 200.0 240.0
Number of Fourier components Number of Fourier modes

FIG. 4. For 2Na in NaC,0,, dependence of the error function Eq. [47] FIG. 5. For*Na in NgC,0,, dependence of the error function Eq. [47]
for different discretizations of the rotation periodhhsteps, with same NMR  on the number of Fourier modes in Floquet space calculation, with same NM
parameters as in Fig. 3. parameters as in Fig. 3.

the discretization parameter with the present method and whtkdtion with the experimental data for long irradiation shows
Floquet space calculations, respectively. An error less thafl 1¢hat the model is reliable for describing the RIACT phenom
gives a curve than cannot be distinguished from the refererfPN. The critical dependence with respect to the offset in tf
curve. Thus, sufficient accuracy is obtained with a discretizati@fiabatic conversion process is shown in Fig. 8, where tf
in 256 steps of the rotation for evaluating thg, 0) operators and signal is computed for an optimal short pulse durationu¢}
256-mode Fourier components. For the Floquet space approdéi! One-quarter of the rotation period (28). Itis also visible
more than 200 mode states are required. These values are of g€ powder averaged spectra (Fig. 9) that the intense cor
same order as expected from the relation Eq. [26]. The CPU tifi@nents at multiples of the rotation frequency disappear whe
needed for the diagonalization of the Floquet Hamiltonian wad€ Offset increases. These well-resolved components at
302.25 s, whereas by the present method, evaluation 6 tied rqtatlon frequency lead us to conclude that some part of tt
F,, operators required 0.11 s. triple quantum coh.erence and the §|ngle quantum coheren
Agreement of our simulation with experiment for powdef® locked to multiples of the rotation frequency under on
signals is shown in Fig. 6 for short pulses and in Fig. fesonance |rraQ|at|on. Suc_h .gonS|dera't|0ns can be of gre
for long on-resonance irradiation. The experimental data wePgerest in studying the possibility of locking the triple quanturr
acquired using a hypercomplex phase cycli#g @nd we plot cohere_nce for multl_ple qqantum cross-polarization processe
the area of the spectra for different pulse widths of the secohfiS Will be further investigated.
pulse which transfer the triple quantum coherence into the
single one. Nevertheless, for pulse width greater thaus6a
loss of half of the signal was observed during the first quarter VIl CONCLUSION

of the rotation period as shown in Fig. 6. In Fig. 7, the gome properties of the evolution operator for periodic time
theoretical curve was scaled by a factor of 2 with respect t0 t§gnendent Hamiltonians have been carefully analyzed. This :
theoretical curve of Fig. 6. Considering all the preparatiogs significant improvements in the calculation of the respons
period, that is, the excitation of the triple quantum coheren@??spin systems in sample-spinning NMR expetiments. That sin

before its conversion, does not lead to any significant modifitation method is more efficient than the Floquet space methc
cation of our theoretical result. The signal is simply scaled. We

also tried to take into account some local figlt, with a
Gaussian distribution of the parameé&efThis could not repro- r Y T T
duce so rapid a loss of signal during the first quarter-period. g, |
This phenomenon is unexplained for the moment, and other
models are currently being investigated, such as taking into= ®

account the homonuclear dipolar interaction by considering® g1 | ——— Theoretical data
several spins. This interaction is not crucial in the hard pulse ® Experimental data
regime but can have a significant effect in the adiabatic con-

version process. Nevertheless, the good agreement of our sim- 0.0 ‘ b e
0.0 4.0 8.0 12.0 16.0

Pulse duration (us)

2 Calculations were performed on an UltraSparc Il (CPU frequency 170FIG. 6. For?*Na in NaC,0,, experimental and simulated powder signal
MHz) SUN station with a program written in FORTRAN 90, using theEq. [45] with respect to pulse duration in microseconds. Experimental da
diagonalization procedures FO2HAF and FO2GBF of the NAG FORTRAMere obtained on a Bruker 300-Mhz DMX withg = 12.5 kHz,wge = 160
library (mark 16). kHz, 6 = 3 kHz. For numerical data, the rotation is discretized in 256 steps
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0.4 T i T 0.060 F T T ' T T 7
—— Theoretical data ~ 8=+3 kHz
0.3 r « Experimental data 0.040 | 4
S 02| 3
= 0.2 . )
@ ? 0020 | :
0.1
. 0.000 |- A
'O L 1 n 1 L L 1 I L L
0.0 80.0 160.0 240.0 320.0 400.0 480.0 0.020 T T w T
Irradiation duration (us) L $=+7 kHz

FIG. 7. For2?Na in Na,C,0,, experimental and simulated powder signal
Eq. [45] with respect to on-resonance irradiation duration in microsecondsg 0.010 - .

with same NMR parameters as in Fig. 6. 7]

1 L 1

which requires diagonalization of a matrix of large dimension. 0.020 K : . , .
Moreover, that method can be seen as a new way of diagonalizing L §=+15 kHz

the Floguet matrix by taking advantage of its band structure.
Generalization of our approach for multimode is currently beings

investigated. The application to the complete simulation of MQe> 0.010
MAS spectra44, 45, including the Z-filtering method4g), will
be presented elsewhef@s). This approach will also be useful in
theoretical studies of CPMAS processes for quadrupolar nuclei. 0.000 ‘ ; ‘
-100.0 -50.0 0.0 50.0 100.0

Research in this direction is being undertaken. (KH2)

FIG. 9. For ?°Na in NaC,0,, spectras(w) (Eq. [38]) of the powder

i ' ! ' ! signal for different values of the offset, other parameters being the same
o——® Pulse conversion in Fig. 6.
o—0 Adiabatic conversion
0.20 )
E N" = 3 klk)(K|
0.10 “
C
OOO . 1 . L s 1 I L L L ot _Id 0 0 ot
-14.0 -6.0 2.0 10.0 18.0 26.0 34.0 = ... 0 0 0 - [A3]
Offset & (kHz) ... 0 0 +Id
FIG.8. For®Nain NaC,0,, theoretical dependence of the powder signal
intensity Eq. [45] on the offset (a) for small pulse width=f 3 us) and (b) for
adiabatic conversionr(= 20 us) with the same parameters as Fig. 6. and
IF= k)(k], A4
APPENDIX A % [k <k] [A4]

The evolution operator in the Floguet space is _ . _ _ .
QF can be rewritten a® = wgN" + QIF. We want to derive

UF(t, 0) = e M1 = WFe IOty [A1] the equivalence between Egs. [21] and [22]. We recall sorr
’ ’ useful properties:
The eigenvalues of the Floquet Hamiltonian are known to be
of the fo?m | > (n|®F(0)) =Id [A5a]

n

Ay = Ao+ Nog, [A2] e k) = e k) [A5b]

—iQIFt — a-it
wherei indexes the spin state amdthe Flogquet mode. Thus, € k) = e o [ASc]
introducing the block matrix (p + kKIWFIK) = (p|W|0). [A5d]
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Equation [21] can be transformed as follows: U, o0=> <nlvvF|k>efifh<klvvF+|O>ei(n7k)th
k.n
U(, 0 = z <I’l|efiHFt|k><k|(1)F(0)>eiant _ 2 <p + leF|k>e—i(2t<k|VVF+|O>eiprt
nk
, o
= 2 (W Ip) (ple™"[p) (pIWF* k) (KID* ()™ e
nkp = (E (PW'|0) é"‘"”‘)B"“(Z kW |0>>-
= Z <n|V\,F |q + k> e*i(q+k)thefi£72t<q + le\er |k> P k [Cl]
nkq
X (k|®F(0))yen=t, [A6] Comparison with Eq. [7] leads to
Applying the band structure property Eq. [A5d] leads to the Fo= (pIWF|0). (C2]
final result,

It should be mentioned that the initial stad& [0)), Eq. [19],
is related to the usual initial state) |By

U(t, 0) = 3 (n — k|WF|g)e e *(q|W*|0)
K,
» | [F(0)) = WFF*(0)[0). [C3]
X <k|<I)F(O)>e|(nfk)th
. 5 Note added in proofThe formal average ovey (Egs. [38] and [39]) was
_ wRrt Ot
= > (m|WF[g)e e (g |WF|0) recently proposed within the COMPUTE formalism by M. H. Levitt and M.
mgq Eden in the paper “Numerical Simulation of Periodic NMR Problems: FAST
> E (k|(I>F(0))eim‘“Rt Calculation of Carousel Averages,” submittedNtwl. Phys.
k
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